R-Type Ca2+ channels are coupled to the rapid component of secretion in mouse adrenal slice chromaffin cells.
نویسندگان
چکیده
Patch-clamp measurements of Ca(2+) currents and membrane capacitance were performed on slices of mouse adrenal glands, using the perforated-patch configuration of the patch-clamp technique. These recording conditions are much closer to the in vivo situation than those used so far in most electrophysiological studies in adrenal chromaffin cells (isolated cells maintained in culture and whole-cell configuration). We observed profound discrepancies in the quantities of Ca(2+) channel subtypes (P-, Q-, N-, and L-type Ca(2+) channels) described for isolated mouse chromaffin cells maintained in culture. Differences with respect to previous studies may be attributable not only to culture conditions, but also to the patch-clamp configuration used. Our experiments revealed the presence of a Ca(2+) channel subtype never before described in chromaffin cells, a toxin and dihydropyridine-resistant Ca(2+) channel with fast inactivation kinetics, similar to the R-type Ca(2+) channel described in neurons. This channel contributes 22% to the total Ca(2+) current and controls 55% of the rapid secretory response evoked by short depolarizing pulses. Our results indicate that R-type Ca(2+) channels are in close proximity with the exocytotic machinery to rapidly regulate the secretory process.
منابع مشابه
O2 sensing in chromaffin cells: new duties for T-type channels.
T-type Cav3 channels are voltage-gated Ca2+ channels that are able to sustain key physiological functions such as low-threshold spikes generation, neuronal and cardiac pacemaking, muscle contraction, hormone release, cell growth and differentiation. This mainly derives from the unique property of T-type channels that activate at rather negative voltages (∼ −60 mV). These channels are ubiquitous...
متن کاملLinopirdine modulates calcium signaling and stimulus-secretion coupling in adrenal chromaffin cells by targeting M-type K+ channels and nicotinic acetylcholine receptors.
Adrenal chromaffin cells synthesize and release catecholamines and several other transmitters that play important physiological roles in the coordinated response to stress or danger. The main trigger for secretion is acetylcholine (ACh) released from splanchnic nerve terminals that activates nicotinic ACh receptors (nAChRs) on the chromaffin cells, causing membrane depolarization and Ca2+ entry...
متن کاملCalcium signaling and exocytosis in adrenal chromaffin cells.
At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+ concentration ([Ca2+]c) depends on at least four efficient regulatory systems: 1) plasmalemmal calcium channels, 2) endoplasmic reticulum, 3) mitochondria, and 4) chromaffin vesicles. Different mammalian species express different levels of the L, N, P/Q, and R subtypes of high-voltage-activated calcium channels...
متن کاملMechanisms Underlying Phasic and Sustained Secretion in Chromaffin Cells from Mouse Adrenal Slices
Many neurosecretory preparations display two components of depolarization-induced exocytosis: a phasic component synchronized with Ca2+ channel opening, followed by a slower sustained component. We evaluated possible mechanisms underlying this biphasic behavior by stimulating mouse chromaffin cells in situ with both depolarizations and flash photolysis of caged Ca2+. From a direct comparison of...
متن کاملTiming of dense-core vesicle exocytosis depends on the facilitation L-type Ca channel in adrenal chromaffin cells.
Secretion from dense-core vesicles is reputedly much slower than that from typical synaptic vesicles, possibly because of noncolocalization of Ca channels and release sites. We reinvestigated this question by measuring the kinetics of catecholamine release in chromaffin cells from calf and adult bovines. Amperometric recording from calf chromaffin cells stimulated by action potentials exhibited...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 22 شماره
صفحات -
تاریخ انتشار 2000